Exposing Unethical Practices: How Some Suppliers Misrepresent Non-VD Steels as VD Steels

In the steel industry, the distinction between Vacuum Degassed (VD) and non-VD steels is critical, particularly when it comes to ensuring the quality and performance required for demanding applications. VD steels are prized for their superior purity, reduced gas content, and enhanced mechanical properties. However, the high demand for these materials has unfortunately led to the emergence of deceptive practices where unscrupulous suppliers attempt to pass off non-VD steels as VD steels. Understanding these fraudulent tactics is essential for safeguarding your operations and maintaining the integrity of your supply chain.

Deceptive Practices in the Steel Industry

  1. Fabrication of Certifications: One of the most common methods used to misrepresent non-VD steels is the falsification of certification documents. Unscrupulous suppliers may forge certificates or alter legitimate ones to falsely indicate that the steel has undergone the VD process. This fraudulent documentation can be difficult to detect without thorough verification.
  2. Manipulation of Testing Results: In some cases, suppliers may manipulate testing processes to produce results that falsely suggest the steel is VD route. This could involve testing selective samples that do not represent the entire batch or adjusting test conditions to achieve misleading outcomes. Such practices can deceive even seasoned professionals, leading to the unintended use of inferior materials.
  3. Superficial Treatments: Non-VD steels may undergo superficial treatments designed to mimic the appearance or characteristics of VD steels. These treatments may improve the surface finish or alter certain properties, creating the illusion of higher quality while the internal composition remains unchanged.
  4. Lack of Transparent Traceability: Fraudulent suppliers often provide insufficient traceability information, making it difficult to verify the steel’s origin and processing history. Without comprehensive documentation, such as transport receipts and payment proofs, buyers are left vulnerable to receiving substandard materials.

Steelmet Industries: A Commitment to Integrity and Transparency

At Steelmet Industries, we recognize the importance of maintaining the highest standards of quality and ethical conduct in every aspect of our operations. We stand firmly against the unethical practices that tarnish the reputation of the steel industry, and we are dedicated to providing our customers with genuine, high-quality VD route steels.

Our commitment to integrity is reflected in the following practices:

  • Authentic and Verified Documentation: Steelmet Industries provides precise and verifiable certifications for all our products, ensuring that the documentation accurately reflects the true nature of the steel. Our certifications comply with the highest industry standards and are designed to offer complete transparency.
  • Comprehensive Traceability: For all regular and scheduled orders, we offer complete traceability, including transport receipts and payment proofs. This level of transparency allows our customers to verify the sourcing, processing, and delivery of their materials, providing peace of mind and assurance of authenticity.
  • Zero Tolerance for Unethical Conduct: Steelmet Industries does not accept, condone, or engage in any unethical practices. Our unwavering commitment to honesty and integrity ensures that our customers receive products that meet the highest standards of quality, without compromise.

By choosing Steelmet Industries as your trusted partner, you can rest assured that you are receiving authentic VD route steels, backed by transparent documentation and ethical business practices. Protect your operations from the risks associated with misrepresented materials by partnering with a supplier that values integrity as much as you do.

For more information on our products and services, and to experience the Steelmet Industries difference, visit us at Steelmet Industries.

Conclusion

In a market where the stakes are high, ensuring the authenticity of your steel products is paramount. By staying informed and choosing a reputable supplier like Steelmet Industries, you can avoid the pitfalls of deceptive practices and secure materials that meet the rigorous demands of your applications. Trust Steelmet Industries to deliver the quality and integrity you need to succeed.

How to identify VD and Non-VD steels: A comprehensive approach

Identifying whether a steel piece has gone through the Vacuum Degassing (VD) process is crucial for ensuring it meets the necessary quality standards. While there are several techniques to analyze and identify VD and non-VD steels, no single method can conclusively confirm the steel’s production route on its own. To make a reliable determination, you need to use a combination of processes. In this article, we’ll walk you through the most effective techniques and how they work together to establish whether a steel piece is VD route or not.

The Need for Multiple Techniques

Since VD steels are distinguished by their purity, reduced gas content, and improved mechanical properties, relying on just one technique may not provide a complete picture. Different methods reveal different aspects of the steel’s characteristics, and only by combining these insights can you accurately determine whether the steel has been vacuum degassed.

1. Chemical Analysis

Chemical analysis involves measuring the levels of dissolved gases like hydrogen, nitrogen, and oxygen in steel. VD steels typically have lower levels of these gases. Techniques such as Optical Emission Spectroscopy (OES) or Gas Chromatography are used for this analysis. However, this method alone isn’t definitive since environmental factors can affect gas levels.

Textual Reference:

  • “Vacuum Degassing Process” by Steel Plant Technology, which provides a detailed overview of how vacuum degassing affects gas content in steel.

2. Microscopic Examination

Microscopic examination, using optical or electron microscopy, helps in assessing the cleanliness and inclusions in steel. VD steels generally have fewer non-metallic inclusions. This examination reveals the internal cleanliness but should be used in conjunction with other methods, as inclusion levels can vary based on other processing factors.

Textual Reference:

  • “Metallographic Techniques for Steel Analysis,” ASM International, which covers the use of microscopy in analyzing steel properties and cleanliness.

3. Ultrasonic Testing

Ultrasonic testing detects internal defects and assesses uniformity. VD steels often exhibit fewer internal voids or gas pockets. This method is valuable but does not conclusively identify VD processing on its own, as good ultrasonic results can also be achieved with non-VD steels.

Textual Reference:

  • “Ultrasonic Testing Basics,” NDT.net, which provides an overview of how ultrasonic testing is used to assess steel quality.

4. Hydrogen Content Measurement

Measuring hydrogen content is crucial as VD processing aims to reduce hydrogen levels. The hot extraction method measures hydrogen released from the steel when heated. While this provides strong evidence of VD processing, it should be verified with additional tests due to potential influences from other factors.

Textual Reference:

  • “Measurement of Hydrogen in Steel,” ScienceDirect, which explains the techniques used for measuring hydrogen content in steel.

5. X-Ray Diffraction (XRD)

X-Ray Diffraction (XRD) provides insights into the crystalline structure of the steel. VD steels typically show more defined peaks due to their homogeneity. Although XRD is not a direct identification method, it supports other findings regarding the steel’s structure.

Textual Reference:

  • “Introduction to X-Ray Diffraction,” Chemistry Views, which describes how XRD is used to analyze steel’s crystalline structure.

6. Spectroscopic Methods

Spectroscopic techniques like Fourier-transform infrared spectroscopy (FTIR) or Raman spectroscopy detect differences in chemical bonds and composition, indirectly indicating VD processing. These methods are more supportive and confirmatory rather than standalone.

Textual Reference:

  • “Applications of FTIR Spectroscopy,” ScienceDirect, which discusses how FTIR can be used to analyze steel and confirm processing methods.

7. Mechanical Testing

Mechanical tests such as tensile and impact tests can show properties typical of VD steels, like higher strength and toughness. While useful, these tests should be complemented with other methods since similar mechanical properties can be achieved through other processing techniques.

Textual Reference:

  • “Mechanical Testing of Steel,” Materials Unschool, providing insights into how mechanical testing is used to evaluate steel properties.

8. Supplier Documentation and Certifications

Supplier documentation often includes certifications detailing the production process, including whether VD was used. While this information is useful, it should be cross-verified with physical tests to ensure accuracy.

Textual Reference:

  • “Understanding Steel Certifications,” CSA Group, which explains how certifications and documentation are used to confirm steel production processes.

A Combined Approach for Conclusive Identification

To conclusively identify VD route steel, it’s essential to use a combination of the above techniques. Here’s how you can approach it:

  1. Start with Chemical Analysis: Measure the levels of hydrogen, nitrogen, and oxygen to get an initial indication of whether VD was used.
  2. Use Microscopic Examination: Check for non-metallic inclusions to assess the steel’s cleanliness, supporting the chemical analysis findings.
  3. Perform Ultrasonic Testing: Look for internal defects to ensure the steel’s homogeneity, which is typical of VD route steel.
  4. Measure Hydrogen Content: Specifically confirm the low hydrogen levels that are a hallmark of VD processing.
  5. Supplement with XRD and Spectroscopic Methods: Use these techniques to provide additional evidence of the steel’s structural integrity and chemical composition.
  6. Conduct Mechanical Testing: Verify the steel’s mechanical properties, ensuring they align with the expected performance of VD route steel.
  7. Review Supplier Documentation: Cross-check physical test results with the documentation provided by the supplier to confirm the steel’s production process.

Conclusion

Identifying VD and non-VD steels is a complex process that requires more than just one technique. By combining chemical analysis, microscopic examination, ultrasonic testing, hydrogen content measurement, and other methods, you can reliably determine whether a steel piece has undergone the VD process. This comprehensive approach ensures that you select the right material for your application, meeting both quality standards and performance requirements.

For more detailed guidance and expert assistance in selecting the right steel for your needs, visit Steelmet Industries.